Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.657
Filtrar
1.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521276

RESUMO

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Assuntos
Metagenoma , Petróleo , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Oceanos e Mares , Petróleo/metabolismo
2.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 739-757, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545974

RESUMO

Owing to human activities and industrial production, petroleum pollution has become a serious environmental issue. Microbial remediation technology, characterized by its eco-friendly characteristics, has drawn significant attention in petroleum pollution remediation. The application of molecular biology technology has led to a drastic revolution in microbial remediation technology, providing resources for the development of highly efficient degrading agents. However, limitations such as the lack of precision in species annotation and the limited detection sensitivity still exist. Other microbial remediation technologies also have substantial potential in enhancing the degradation efficiency of petroleum pollutants and reducing their environmental harm, especially biosurfactants and bio-stimulants, which offer relatively shorter remediation periods and lower costs, promising large-scale application in the future. Moreover, the combination of molecular biology and other microbial remediation technologies may become an effective tool for petroleum pollutant degradation. This review summarized the application of molecular biology methods in petroleum polluted environments, reviewed the recent research progress on microbial remediation techniques for petroleum-contaminated sites, discussed the remediation effects of these microbial remediation techniques, and proposed the future development direction of microbial remediation technology.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluição por Petróleo , Petróleo , Poluentes do Solo , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
3.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502272

RESUMO

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Assuntos
Petróleo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/química , Petróleo/metabolismo
4.
J Hazard Mater ; 466: 133600, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316070

RESUMO

This study aimed to remediate petroleum-contaminated soil using co-pyrolysis biochar derived from rice husk and cellulose. Rice husk and cellulose were mixed in various weight ratios (0:1, 1:0, 1:1, 1:3 and 3:1) and pyrolyzed under 500 °C. These biochar variants were labeled as R0C1, R1C0, R1C1, R1C3 and R3C1, respectively. Notably, the specific surface area and carbon content of the co- pyrolysis biochar increased, potentially promoting the growth and colonization of soil microorganisms. On the 60th day, the microbial control group achieved a 46.69% removal of pollutants, while the addition of R0C1, R1C0, R1C3, R1C1 and R3C1 resulted in removals of 70.56%, 67.01%, 67.62%, 68.74% and 67.30%, respectively. In contrast, the highest efficiency observed in the abiotic treatment group was only 24.12%. This suggested that the removal of petroleum pollutants was an outcome of the collaborative influence of co-pyrolysis biochar and soil microorganisms. Furthermore, the abundance of Proteobacteria, renowned for its petroleum degradation capability, obviously increased in the treatment group with the addition of co-pyrolysis biochar. This demonstrated that co-pyrolysis biochar could notably stimulate the growth of functionally associated microorganisms. This research confirmed the promising application of co-pyrolysis biochar in the remediation of petroleum-contaminated soil.


Assuntos
Poluentes Ambientais , Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Petróleo/metabolismo , Pirólise , Carvão Vegetal , Solo , Poluentes do Solo/análise , Celulose
5.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346247

RESUMO

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Assuntos
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradação Ambiental , Ágar , Glicerol , Asparagina , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Carbono , Tensoativos/química
6.
Environ Sci Pollut Res Int ; 31(13): 20637-20650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383925

RESUMO

Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.


Assuntos
Carvão Vegetal , Petróleo , Scedosporium , Scedosporium/genética , Scedosporium/metabolismo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Fungos/metabolismo , Carbono
7.
Arch Microbiol ; 206(3): 98, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351169

RESUMO

Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L-1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L-1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L-1 h-1 was observed for P. agglomerans. The gas chromatography-mass spectroscopy (GC-MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.


Assuntos
Hidrocarbonetos Aromáticos , Pantoea , Petróleo , Poluentes do Solo , Humanos , Pantoea/genética , Pantoea/metabolismo , Petróleo/metabolismo , Irã (Geográfico) , Poluentes do Solo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Solo/química , Microbiologia do Solo
8.
Mar Pollut Bull ; 200: 116157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364643

RESUMO

The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes Químicos da Água/análise
9.
Sci Rep ; 14(1): 3866, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365802

RESUMO

Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Níger , Poluentes do Solo/metabolismo , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Microbiota/genética , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Solo/química , DNA/metabolismo
10.
Sci Total Environ ; 919: 170756, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340816

RESUMO

A plausible approach to remediating petroleum contaminated soil is the integration of chemical and biological treatments. Using appropriate chemical oxidation, the integrated remediation can be effectively achieved to stimulate the biodegradation process, consequently bolstering the overall remediation effect. In this study, an integrated biological-chemical-biological strategy was proposed. Both conventional microbial degradation techniques and a modified Fenton method were employed, and the efficacy of this strategy on crude oil contaminated soil, as well as its impact on pollutant composition, soil environment, and soil microorganism, was assessed. The results showed that this integrated remediation realized an overall 68.3 % removal rate, a performance 1.7 times superior to bioremediation alone and 2.1 times more effective than chemical oxidation alone, elucidating that the biodegradation which had become sluggish was invigorated by the judicious application of chemical oxidation. By optimizing the positioning of chemical treatment, the oxidization was allowed to act predominantly on refractory substances like resins, thus effectively enhancing pollutant biodegradability. Concurrently, this oxidating maneuver contributed to a significant increase in concentrations of dissolvable nutrients while maintaining appropriate soil pH levels, thereby generating favorable growth conditions for microorganism. Moreover, attributed to the proliferation and accumulation of degrading bacteria during the initial bioremediation phase, the microbial growth subsequent to oxidation showed rapid resurgence and the relative abundance of typical petroleum-degrading bacteria, particularly Proteobacteria, was substantially increased, which played a significant role in enhancing overall remediation effect. Our research validated the feasibility of biological-chemical-biological strategy and elucidated its correlating mechanisms, presenting a salient reference for the further studies concerning the integrated remediation of petroleum contaminated soil.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo
11.
Microb Cell Fact ; 23(1): 20, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218907

RESUMO

The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.


Assuntos
Candida tropicalis , Petróleo , Humanos , Candida tropicalis/metabolismo , Biodegradação Ambiental , Leveduras/metabolismo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Fenol/metabolismo , Naftalenos/metabolismo
12.
Sci Rep ; 14(1): 2359, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286879

RESUMO

Biotransformation of organic pollutants is crucial for the dissipation of environmental pollutants. While the roles of microorganisms have been extensively studied, the significant contribution of various root exudates are still not very well understood. Through plant growth experiment, coupled with gas and liquid chromatography-mass spectrometry methods, this study examined the effect of the presence of M. sativa on microbial-associated biochemical transformation of petroleum hydrocarbons. The results of this study revealed that the concentration of exudates within the soil matrix is a function of proximity to root surfaces. Similarly, biodegradation was found to correlate with distance from roots, ranging from ≥ 90% within the rhizosphere to < 50% in bulk soil and unplanted control soil. Most importantly, for the first time in a study of an entire petroleum distillate, this study revealed a statistically significant negative correlation between root exudate concentration and residual total petroleum hydrocarbons. While not all the compounds that may influence biodegradation are derived from roots, the results of this study show that the presence of plant can significantly influence biodegradation of hydrocarbon pollutants through such root exudation as organic acids, amino acids, soluble sugars and terpenoids. Therefore, root exudates, including secondary metabolites, offer great prospects for biotechnological applications in the remediation of organic pollutants, including recalcitrant ones.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Poluentes Ambientais/metabolismo , Poluentes do Solo/metabolismo , Rizosfera , Biodegradação Ambiental , Solo , Biotransformação , Exsudatos e Transudatos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Raízes de Plantas/metabolismo , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
13.
Aquat Toxicol ; 267: 106825, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176169

RESUMO

Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.


Assuntos
Copépodes , Petróleo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Cadeia Alimentar , Água/farmacologia , Regiões Árticas , Petróleo/toxicidade , Petróleo/metabolismo
14.
Environ Sci Pollut Res Int ; 31(7): 10802-10817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212565

RESUMO

Bioremediation is a sustainable and pollution-free technology for crude oil-contaminated soil. However, most studies are limited to the remediation of shallow crude oil-contaminated soil, while ignoring the deeper soil. Here, a high-efficiency composite microbial agent MAB-1 was provided containing Bacillus (naphthalene and pyrene), Acinetobacter (cyclohexane), and Microbacterium (xylene) to be synergism degradation of crude oil components combined with other treatments. According to the crude oil degradation rate, the up-layer (63.64%), middle-layer (50.84%), and underlying-layer (54.21%) crude oil-contaminated soil are suitable for bioaugmentation (BA), biostimulation (BS), and biostimulation+bioventing (BS+BV), respectively. Combined with GC-MS and carbon number distribution analysis, under the optimal biotreatment, the degradation rates of 2-ring and 3-ring PAHs in layers soil were about 70% and 45%, respectively, and the medium and long-chain alkanes were reduced during the remediation. More importantly, the relative abundance of bacteria associated with crude oil degradation increased in each layer after the optimal treatment, such as Microbacterium (2.10-14%), Bacillus (2.56-12.1%), and Acinetobacter (0.95-12.15%) in the up-layer soil; Rhodococcus (1.5-6.9%) in the middle-layer soil; and Pseudomonas (3-5.4%) and Rhodococcus (1.3-13.2%) in the underlying-layer soil. Our evaluation results demonstrated that crude oil removal can be accelerated by adopting appropriate bioremediation approach for different depths of soil, providing a new perspective for the remediation of actual crude oil-contaminated sites.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Petróleo/metabolismo , Microbiologia do Solo , Hidrocarbonetos/metabolismo
15.
Chemosphere ; 351: 141174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218242

RESUMO

Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.


Assuntos
Água Subterrânea , Microbiota , Petróleo , Compostos de Sódio , Sulfatos , Petróleo/toxicidade , Petróleo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água Subterrânea/química
16.
Environ Pollut ; 344: 123299, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185355

RESUMO

Considering the interference of the complexity of underground environment to the bioremediation scheme, an evaluation model for bioremediation technology in the soil source area of oil contaminated sites was established. On the basis of traditional CDE model, a compartment model was coupled to express the adsorption and degradation process, and the spatial expression of biodegradation was enriched through environment-dependent factors. The visualization of the model was achieved based on COMSOL Multiphysics software platform. Two sets of indoor sandbox experiments on natural attenuation and bioaugmentation were carried out for 120 days to verify the prediction function of the model. The results showed that bioaugmentation greatly improved the remediation effect. Petroleum hydrocarbons with different occurrence states exhibited different spatial distributions under the influence of environmental factors. The prediction accuracy evaluation results of total petroleum hydrocarbons, bio available hydrocarbons and non extractable hydrocarbons showed excellent fitting degree, and the model had a good prediction function for petroleum hydrocarbon in soil under different bioremediation scenarios. This model can be used to screen bioremediation technical schemes, prevent pollution and assess risk of petroleum hydrocarbon contaminated sites.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Petróleo/metabolismo , Solo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/metabolismo
17.
Sci Rep ; 14(1): 2294, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280982

RESUMO

Microbiological enhanced oil recovery (MEOR) uses indigenous or exogenous microorganisms and nutrients to enhance oil production through synthesis of metabolites reducing oil viscosity and surface tension. In order to find bacteria suitable for MEOR, we studied 26 isolates from wells in the Akingen oilfield in West Kazakhstan. Six of them were selected for further analysis based on their ability to reduce surface tension to less than 40 mN/m, with the A9 isolate exhibiting tension reduction values of 32.76 ± 0.3 mN/m. Based on the morphological features, biochemical activities, and the 16S rRNA gene, the isolates were classified to the Bacillus subtilis group. In the phylogenetic analysis the isolates grouped into two main clusters. Genes encoding the surfactin synthetase subunits were found in A2, A8, A9, A12, PW2, only the PW2 strain had lchAA encoding lichenysin, while sacB encoding levan was noted in A2, A8, A9, and A12. The expression of srfAB, srfAC, and sacB tested with qPCR varied among strains. Nevertheless, whereas temperature moderately affects the expression level, with the highest level recorded at 40 °C, salinity significantly impacts the expression of the genes encoding biosurfactants. B. subtilis strains isolated in the study, especially A9, are promising for microbial-enhanced oil recovery.


Assuntos
Petróleo , Petróleo/metabolismo , Campos de Petróleo e Gás , Filogenia , RNA Ribossômico 16S/genética , Cazaquistão , Tensoativos/química , Óleos , Biopolímeros
18.
Sci Total Environ ; 913: 169743, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163595

RESUMO

Petroleum hydrocarbon (PH) pollution threatens both wild and farmed marine fish. How this pollution affects the nutrient metabolism in fish and whether this effect can be recovered have not been well-known. The present study aimed to evaluate these effects with a feeding trial on tiger puffer, an important farmed species in Asia. In a 6-week feeding trial conducted in indoor flow-through water, fish were fed a control diet (C) or diets supplemented with diesel oil (0.02 % and 0.2 % of dry matter, named LD and HD, respectively). Following this feeding trial was a 4-week recovery period, during which all fish were fed a same normal commercial feed. At the end of the 6-week feeding trial, dietary PH significantly decreased the fish growth and lipid content. The PH significantly accumulated in fish tissues, in particular the liver, and caused damages in all tissues examined in terms of histology, anti-oxidation status, and serum biochemical changes. Dietary PH also changed the volatile flavor compound profile in the muscle. The hepatic transcriptome assay showed that the HD diet tended to inhibit the DNA replication, cell cycle and lipid synthesis, but to stimulate the transcription of genes related to liver protection/repair and lipid catabolism. The 4-week recovery period to some extent mitigated the damage caused by PH. After the recovery period, the inter-group differences in some parameters disappeared. However, the differences in lipid content, anti-oxidase activity, liver PH concentration, and histological structure still existed. In addition, differences in cellular chemical homeostasis and cytokine-cytokine receptor interaction at the transcriptional level can still be observed, indicated by the hepatic transcriptome assay. In conclusion, 6 weeks of dietary PH exposure significantly impaired the growth performance and health status of farmed tiger puffer, and a short-term recovery period (4 weeks) was not sufficient to completely mitigate this impairment.


Assuntos
Petróleo , Takifugu , Animais , Takifugu/metabolismo , Peixes , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Lipídeos , Fígado/metabolismo
19.
Sci Rep ; 14(1): 8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168910

RESUMO

Indigenous micro-organisms often possess the ability to degrade petroleum hydrocarbon (PHC) in polluted soil. However, this process can be improved by supplementing with nutrients or the addition of more potent microbes. In this study, the ability of kenaf-core to stimulate the PHC degradation capability of microbial isolates from PHC polluted soil samples was evaluated. The standard experimental methods used in this study include: the digestion and analysis of the physico-chemical properties of petroleum hydrocarbon contaminated and non-contaminated soil samples; evaluation of petroleum hydrocarbon biodegradation using bio-augmentation and bio-stimulation (with kenaf-core) treatments; and, determination of soil microbial enzyme activities. Results from this study show that K, Na, total nitrogen, organic carbon, exchangeable cations, and heavy metals were found to be significantly (P < 0.05) higher in the polluted soil than in the non-polluted soil. Also, the polluted samples had pH values ranging from 5.5 to 6.0 while the non-polluted samples had a pH of 7.6. The microbial enzyme activities were comparatively lower in the polluted soils as compared to the non-polluted soil. The percentage degradation in the kenaf-core treated samples (AZ1T2-78.38; BN3T2-70.69; OL1T2-71.06; OT1T2-70.10) were significantly (P < 0.05) higher than those of the untreated (AZ1T1-13.50; BN3T1-12.50; OL1T1-10.55; OT1T1-9.50). The degradation of petroleum hydrocarbon in the bio-augmented and bio-stimulated treatments increased with increasing time of incubation, and were higher than that of the untreated sample. Comparatively, the treatment with a combination of kenaf-core and rhamnolipid exhibited a significantly (P < 0.05) higher degradation rate than that of the treatment with only kenaf core or rhamnolipid. While, the bio-stimulated and bio-augmented treatments had appreciable microbial counts that are higher than that of the untreated. In conclusion, the nutrient-supplement with kenaf-core significantly enhanced microbial growth and activities in the soil, thus improving their ability to biodegrade petroleum hydrocarbons in the polluted soils. Thus, supplementing with Kenaf core to encourage microbiological degradation of petroleum hydrocarbon is recommended.


Assuntos
Hibiscus , Petróleo , Poluentes do Solo , Hibiscus/metabolismo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Microbiologia do Solo
20.
Chemosphere ; 349: 140881, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048826

RESUMO

Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.


Assuntos
Micorrizas , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Qualidade de Vida , Petróleo/metabolismo , Solo , Plantas/metabolismo , Micorrizas/metabolismo , Hidrocarbonetos/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...